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Green chemical approach for facile one-pot synthesis
of 2,4,8-trisubstituted-1,5-benzothiazepines and their

dioxides under microwave irradiation
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and ANDRÉ LOUPY‡

†Department of Chemistry, University of Rajasthan, Jaipur 302 004, India; ‡Laboratoire des
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2,4,8-Trisubstituted-1,5-benzothiazepines (synthesized ‘in situ’) have been
selectively oxidised to the corresponding sulfones via a one-pot procedure
in 9 min. with 91% yield under microwave irradiation coupled with clay-
supported ferric nitrate.

Keywords: 2,4,8-Trisubstituted-1,5-benzothiazepines; Selective oxidation;
Microwave irradiation; Clayfen

1. Introduction
The immense chemotherapeutic applications of 1,5-benzothiazepines [1, 2], especially that of
Diltiazem in the treatment of cardiovascular ailments, has generated great interest in this class
of compounds.

Sulfoxides are also valuable reagents in the application of organosulfur compounds in
organic synthesis [3]. Sulfoxidation of various heterocycles has been extensively studied, e.g.
1,4-benzothiazines [4], phenothiazines, benzothiazepine [5] derivatives as potent psychotrop-
ics, anticonvulsants, hypolipidemics, and pesticides. Given the enhanced bioactivity of sulfonyl
derivatives of benzothiazepine derivatives, the sulfide oxidation of some of the title compounds
was investigated so as to explore their medicinal properties.

Conventionally, oxidative access to sulfoxides/sulfones of 2,3-dihydro-1,5-benzo-
thiazepines [6] and its derivatives [7] has been reported using KMnO4, H2O2, +AcOH/oxalic
acid, conc. HNO3, m-chloroperbenzoic acid, NaIO4 and dimethyldioxirane. The procedures
often involve prolonged refluxing in volatile solvents, acidic catalysts with tedious workup
procedures and a further need of solvents for the purification process, eventually affording
the required product in lower yield. Microwave irradiation (MWI) promotes the synthesis of
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various compounds [8], accelerating chemical reactions through the selective absorption of
microwaves by polar molecules. Recently, the coupling of MWI with solid supports under
solvent-free conditions has attracted much attention due to reduced reactions times, ease of
workability, and the opportunity to work with open vessels under scale up conditions. Solvent-
free NaIO4-catalyzed oxidation of sulfide into sulfone under microwaves has also been reported
by Varma et al [9].

Among the various solid supports, clay has been used extensively in view of its Lewis acid
character [10]. Clay doped with Fe(III) nitrate (Clayfen) has been reported by Varma et al. for
the oxidation of a wide variety of sulfides [11] (acyclic, cyclic and aromatic), selectively to the
corresponding sulfoxide under solvent-free conditions. In addition to this favorable chemose-
lective aspect, this solid-state reaction process is also applicable to long-chain aliphatic sulfides,
which are normally insoluble in polar solvents and are therefore difficult to oxidize by conven-
tional methods. Although Clayfen has been used in several organic reaction transformations,
its use for exploring the oxidation of heterocyclic sulfides has received no attention.

2. Results and discussion
In continuation to our endeavors in this general area of reactions that are accelerated by
microwave irradiation [12] we have developed a one-pot procedure for the synthesis of 2,4,8-
trisubstituted-1,5-benzothiazepine-1,1-dioxides by varying different parameters of inorganic
solid supports (table 1, scheme 1). The key intermediates, i.e. 1,5-benzothiazepines required
for the oxidation reactions were prepared in situ under microwave irradiation in quantitative
yields. For comparison, the reaction was also tried conventionally, which required a three-
step procedure involving prolonged reflux in volatile organic solvents and corrosive acids
(HCl/AcOH).

The relative amount of support:substrate:ferric nitrate was optimized, with the best results
obtained for 0.001 mole of Fe(III)NO3 catalyst in 2 g of the support, keeping the molar ratio
of the substrate constant, i.e. 0.001 mole. In another experiment, a 1:3 molar ratio of sub-
strate:ferric nitrate also afforded sulfones, but in lower yields due to concomitant formation of
byproducts that, however, could not be separated and identified.

In conclusion, a simple, rapid and high yielding MW accelerated method for the selective
oxidation of heterocyclic sulfides to sulfones has been developed that occurs under solvent-
free conditions using Fe(III)NO3 impregnated on clay, avoiding the drastic conditions used in
earlier reactions [6, 7].

Synthesis of new key intermediates (6a–g) was confirmed on the basis of spectral stud-
ies [13]. IR spectra (ν, cm−1) of 6a–g did not reveal absorption bands due to carbonyl and

Table 1. Comparative results for the synthesis of 7a (X = OC2H5).

Entry Method Solvent/support Time (min.) Tempa · (◦C) Yieldb (%)

1 � gl. AcOH + H2O2 720 Reflux 42
2 MW H2O2 20 60 –
4 MW H2O2 + montmorillonite KSF 15 105 65
6 MW KSF + Fe(III)NO3 9 110 91
7 MW K10 + Fe(III)NO3 6 125 88
8 � KSF + Fe(III)NO3 9 110 nil
9 � KSF + Fe(III)NO3 60 110 10

aFinal temperature measured at the end of microwave irradiation by introducing a glass thermometer in the reaction
mixture.
bYield of the isolated products.
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Synthesis of 1,5-benzothiazepines and their dioxides 285

SCHEME 1

primary amino group and showed characteristic absorptions in the range 3500–3600 (OH),
3350–3320 (NH), indicating the formation of 6 instead of the Michael adducts 5. 1H NMR
spectra (δ, ppm) of 6a–g show a pair of doublets at 6.22–6.65 (d, 1H, C-2-H, J = 6 Hz) and
at 6.69–7.05 (d, 1H, C-3-H, J = 6 Hz) along with aromatic protons at 6.25–7.15 [(m, Ar-H,
12H (6a–e), 17H (6f, g)] and N–H proton at 4.06 (bs, exchangeable with D2O).

The 13C NMR spectrum (δ, ppm) of 6c shows signals at 41.2 (C2), 56.2 (OCH3), 106.7
(C-3), 108–130.7 (16 aromatic ring carbons), 158.5 (C-4–N), 161.0 (Ar-C8OCH3), 168.3 (Ar-
C-2-OH). The mass spectrum of 6e shows m/z at 409 [M]+ (14.1%), which corresponds to
the molecular weight of the compound. Other peaks appear at 407 (24.8%), 384 (8.1%), 301
(100%), 300 (75.2%), etc.

Further oxidation of 6a, b to give exclusively the corresponding sulfones (7a, b) was also
confirmed by spectral studies. IR (ν, cm−1) spectra show characteristic bands in the region
1395–1240, 560–520 and 1160–1125 analogous to three fundamental absorption bands in
the sulfur dioxide molecule [14]. Other characteristic N–H and C–S absorption bands appear
at 3420–3400 and 1110–1095, respectively, involving shifts to a higher frequency region as
compared with starting materials (6a, b). 1H NMR spectra (δ, ppm) of 7a, b show signals for
aromatic and NH protons in the expected range along with a pair of doublets at 6.80–6.82
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(d, 1H, C-2-H, J = 6 Hz) and at 7.32–7.35 (d, 1H, C-3-H, J = 6 Hz). The downfield shift of
C-2 and C-3 protons signals further supports the oxidation of 6a, b into their corresponding
sulfones.

The 13C NMR spectrum (δ, ppm) of 7a further confirms the formation of sulfones. Signals
appear at 14.3 (OCH2CH3), 42.9 (C2), 66.1 (OCH2CH3), 99.6 (C-3) along with usual signals
due to aromatic carbons at 110–146.7. A shift in the IR spectral pattern and the pronounced
downfield shift of C-2 and C-3 in 13C NMR spectrum of 7a, as compared with that in 6a, can
be explained by the strong electron-withdrawing nature of SO2 group [15]. The formation of
sulfone was also confirmed by the mass spectrum of 7a, which exhibits a molecular ion peak
at m/z 407 [M]

+
(49.6%), corresponding to the molecular weight of the sulfone, and other

relevant peaks appear at 408 [M + 1]+ (75%), 395 (17.0%), 384 (37.6%), 377 (0.8%), 304
(100%), 300 (82%), 168 (68.3%).

3. Experimental
Melting points were determined in open glass capillaries and are uncorrected. IR spectra
(νmax in cm−1) were recorded on a Perkin-Elmer infracord spectrophotometer (Model-577) in
KBr pellets. 1H and 13C NMR spectra [CDCl3 + DMSO-d6] were taken on a Jeol FX 90Q
spectrophotometer at 89.55 and 22.45, MHz respectively, using TMS as an internal reference.
Mass spectra were recorded on a Jeol D-300 spectrometer at an ionization potential of 70 eV.
Elemental analyses for C, H and N were performed on a Heraeus Carlo Erba 1108 analyzer.
Microwave-assisted reactions were carried out using a BPL BMO domestic oven operating at
700 W, generating a frequency of 2450 MHz.

Clayfen [16] and 5-substituted-2-aminobenzenethiols (4a-e) were synthesized by reported
methods [17].

3.1 1-(1-Naphthyl)-3-(1-naphthyl)-2-propenone (3b)
An equimolar mixture of 1b and 2b (0.01 mol) was dissolved in the minimum quantity of
alcohol required to make slurry. To this was added 1 pellet of KOH and the contents were
irradiated inside a microwave oven for 7 min. Yellow crystals appeared on cooling, which
were filtered off, and washed with water to give pure crystalline compound 3b. Mp 141◦C,
yield = 94%. TLC: Rf (benzene-ethyl acetate, 8:2) 0.56. Found: C, 89.51, H 5.21, C23H16O
required C, 89.58, H, 5.29. IR ν(cm−1): 1675 (C=O) 1615–1600 (C=C); HMR (δ, ppm): 6.25
(d, 1H, C-2-H, J = 18 Hz), 6.90 (d, 1H, C-3-H, J = 18 Hz), 6.40–7.15 (m, 14 H, Ar-H).

3.2 2-Hydroxybenzalacetophenone (3a)
3a was prepared following the same procedure, mp 154◦C; yield = 98%. (Lit. [17] mp 156◦C,
71%).

3.3 8-Ethoxy-2-(2-hydroxyphenyl)-4-phenyl-2,5-dihydro-1,5-benzothiazepine (6a)
This was prepared by two routes:

A. Conventional synthesis. An equimolar mixture of 2-amino-5-ethoxybenzenethiol (4a)
(0.001 mol, 0.169 g) and 2-hydroxybenzalacetophenone (3a) (0.001 mol, 0.224 g) in dry
ethanol (20 mL) was saturated with dry hydrogen chloride gas until boiling and the mixture
was then refluxed for 6 h (TLC). It was then cooled and concentrated to obtain a solid, which
on crystallization from methanol gave 6a.

B. MW-induced dry media synthesis. An equimolar mixture of 3a and 4a (0.001 mol) was
adsorbed on a suitable solid support (KSF) (20% by weight of the reactants) via a solution of
ethanol. The solvent was evaporated in a rotary evaporator and the dry free-flowing powder
thus obtained was irradiated inside a MW oven for an appropriate time at 640 W (TLC). The
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Table 2. 1 H NMR spectral (δ ppm) and analytical data of 6a–g and 7a–b.

Yield (%) Elemental analyses (calcd./found)

Compd �/MW Mp (◦C) Ra
f CH NH/OHb (s, b) X Ar–H(m) C H N

6a 65/88 172 0.70 6.60 (C-2, 1H, d, J = 6 Hz), 4.35/10.8 1.42 (t, 3H, J = 6, CH2) 6.34–7.40 73.45/74.23 5.64/5.74 3.73/3.68

6.70 (C-3, 1H, d, J = 6 Hz) 4.09 (q, 2H, J = 6, CH3) (m, 12 H)

6b 67/82 120 0.68 6.67(C-2, 1H, d, J = 6 Hz), 4.28/10.9 2.72 (s, 3H, CH3) 6.25–7.35 76.49/77.29 5.54/5.60 4.05/4.00

6.71 (C-3, 1H, d, J = 6 Hz) (m, 12 H)

6c 63/78 90 0.75 6.65(C-2, 1H, d, J = 6 Hz), 4.20/11.4 3.73 (s, 3H, OCH3) 6.20–7.30 73.01/72.52 5.30/5.18 3.88/3.79

6.69 (C-3, 1H, d, J = 6 Hz) (m, 12 H)

6d 62/80 131 0.74 6.68(C-2, 1H, d, J = 6 Hz), 4.30/11.2 – 6.10–7.15 68.94/69.69 4.41/4.36 3.83/3.89

6.70 (C-3, 1H, d, J = 6 Hz) (m, 12 H)

6e 67/90 102 0.68 6.66(C-2, 1H, d, J = 6 Hz), 4.38/12.5 – 6.00–7.20 61.47/61.90 3.93/4.00 3.41/3.45

6.70 (C-3, 1H, d, J = 6 Hz) (m, 12 H)

6f 42/68 138 0.66 6.25(C-2, 1H, d, J = 6 Hz), 4.00/– 3.55 (s, 3 H, OCH3) 6.15–7.55 80.89/79.76 5.16/5.24 3.14/3.12

7.12 (C-3, 1H, d, J = 6 Hz) (m, 17 H)

6g 54/72 152 0.54 6.22(C-2, 1H, d, J = 6 Hz), 4.15/– 2.67 (s, 3 H, CH3) 6.15–7.50 83.91/85.33 5.36/5.32 3.26/3.22

7.17 (C-3, 1H, d, J = 6 Hz) (m, 17 H)

7a 48/91 142 0.74 6.82(C-2, 1H, d, J = 6 Hz), 5.15/13.8 1.25 (t, 3 H, J = 7, CH2) 7.05–8.01 67.79/68.59 5.19/5.28 3.44/3.48

7.35 (C-3, 1H, d, J = 6 Hz) 3.48 (q, 2 H, J = 7, CH3) (m, 12 H)

7b 51/89 168 0.76 6.80(C-2, 1H, d, J = 6 Hz), 4.98/12.9 2.59 (s, 3 H, CH3) 7.10–8.15 70.00/68.95 5.07/4.99 3.71/3.78

7.32 (C-3, 1H, d, J = 6 Hz) (m, 12 H)

aUsing solvent system benzene–ethyl acetate (8:2).
bNH and OH are D2O exchangeable.
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resultant mixture was eluted with methanol to give pure 6a in quantitative yield. Since 100%
conversion of reactants was observed with formation of single product, it was used as such
for further reaction. In some trials, 6 was isolated for analytical and spectral data (table 2).
Compounds 6b–g were prepared in a similar manner by microwave-induced synthesis.

3.4 8-Ethoxy-2,5-dihydro-1,5-benzothiazepine-1,1-dioxide (7a)
7a was synthesized by two routes.

A. Conventional synthesis. To 6a (0.001 mole; 0.375 g) dissolved in glacial acetic acid
(15 ml), 30% hydrogen peroxide (30 mL) was added and the mixture was boiled reflux for
10–12 h (TLC). Excess solvent was removed by distillation under reduced pressure. The solu-
tion was poured into ice-cold water and the residue so obtained was filtered off, washed
thoroughly with water, dried and crystallized from ethanol to give 7a.

B. MW-assisted synthesis.

(1) A solution of ferric nitrate (0.001 mol) was added to 6a (synthesized in situ). Solvent was
then evaporated in a rotoevaporator and the mixture was irradiated inside a MW oven at
90% power (640 W) for 9 min (TLC). The resultant product was extracted by eluting with
ethanol to give pure crystalline compound 7a. Compound 7b was prepared in a similar
manner under microwave irradiation.

(2) 6a (0.001 mol, 0.375 g) was adsorbed on Clayfen (prepared from 2 g clay + 0.001 mol
Fe(III)NO3) with the help of ethanol, and then dried and irradiated inside a microwave
oven for the appropriate time (6 min, TLC). The product was extracted in a similar manner
to that above to give 7a.
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